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ABSTRACT

A phase-locked loop is briefly described, together with the derivation of the
basic differential equation which governs the dynamic behavior of the loop
during the pull-in process. The special case of the pull-in process of the
first-order loop when a sine wave of constant frequency is applied to the
input of the loop is also described. The relationship between the frequency
mistuning of the loop, the initial starting phase angle of the input sine wave,
and thetime required for the loop to pull in is discussed. The statistical
parameters associated with the pull-in time is reviewed. In particular,
expressions are given for the probability density function of the pull-in

time and the cumulative distribution of the pull-in time.
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SECTION I

INTRODUCTION

The ability of phase-locked loops to separate narrow-band signals from
wide-band noise has led to their increasing use as FM discriminators, tracking

filters, and synchronizing devices, particularly in space communications.

It is possible to design a phase-locked loop so that the loop need have an
effective bandwidth only large enough to pass the difference between the input
signal frequency and the estimate of this frequency as generated by an oscillator
within the loop. Since this difference frequency has considerably less variation
than the actual input signal, the loop does not need nearly as large a bandwidth
as would be needed if the loop were merely a tuned circuit placed between the
system input and the output, which would have to pass all frequencies over

which the input signal varied.

Since the bandwidth of the phase-locked loop can be made much smaller
than that of a comparable nontracking filter, the amount of noise reaching the
output is considerably smaller, and the loop develops a greater resistance to

noise at the input.

However, improvement in one aspect of a system usually results in a
sacrifice in another, and phase-locked loops are no exception. The reduction
in the effective noise bandwidth results in an increase in the pull-in time of the
loop, that is an increase in the time between the appearance of a signal at the

input and satisfactory operation of the loop.

The pull-in time can usually be neglected for systems having long periods
of continuous communication time available, as would the case for a stationary

ground-based system with direct line of sight. However, instances do arise

1




where the pull-in time of the loop may be a significant fraction of the communica-
tion time available. Two examples that come to mind are a meteor-burst scatter
system, where the ionized trails only last for a few seconds, and a military
satellite communication system subject to pulse jamming, where a straight-
forward defense against the jammer is achieved by gating the satellite receiver

on and off in a pseudo-random fashion.

With these comments in mind, it is apparent that the pull-in time of a
phase-locked loop may be a significant factor in the design of certain communi-
cation systems. To illustrate the problem of pull-in time, the example of the
simplest type of phase-locked loop is chosen, and the time required for the

loop to pull-in when an input signal of constant frequency is applied to the input

is derived.




SECTION 1II

DESCRIPTION OF PHASE-LOCKED LOOP

The basic elements of a typical phase-locked loop are shown in Fig. 1
and consist of: a voltage controlled oscillator (VCO) with a nominal frequency
equal to that of the input to the loop; a phase detector which compares the phase
of the output of the oscillator with that of the input to the loop; an amplifier
which amplifies the output voltage of the phase detector; and a low-pass filter

which filters the output voltage of the amplifier before it is applied to the VCO.

Briefly, the phase-locked loop operates as follows: The phase detector
beats the signal input and the VCO output together, giving a low-frequency
output proportional to the sine of the phase difference between the two signals,
together with a high-frequency component located at the sum frequency of the
two inputs. The low-pass filter accepts only the low-frequency term, which
is applied as a control voltage to the VCO, forcing the output phase of the VCO
to follow the input signal phase. Figures 2 and 3 show the control characteristics
of the phase detector and the voltage-controlled oscillator. The phase detector
generates a voltage € (t) which is proportional to both the amplitudes of the
two inputs signals and to the sine of their phase difference, the constant of

proportionality being K,. (K, has dimensions of (volts x radians)—l.) The

4
voltage-controlled oscillator shifts its output frequency by an amount propor-
tional to the voltage applied to its control input, the constant of proportionality

being K, (radians/sec/volt). The point about which the frequency of the
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VCO shifts is »,, usually referred to as the natural or free-running frequency
of the VCO. Figure 3 indicates that o, is the output frequency of the VCO

when the control voltage is zero.

The differential equation governing the dynamic behavior of the loop is
derived below. The input signal to the loop is assumed to be V2 E sin (o, + 6, (),
where E is the rms amplitude and 6, (t) represents the variation of its phase
as a function of time. The output of the voltage-controlled oscillator is
assumed to be V2 Ccos(w, + 6, (t)), where C is the rms amplitude and

represents the variation of its phase as a function of time.

A natural question at this point is why are the loop-input frequency and
the VCO frequency expressed in terms of o, plus a time-varying phase angle
rather than in terms of two different frequencies, for instance, »; and ;.
When the loop input is frequency modulated, both the input and VCO frequencies
change as a function of time during and after the condition of lock-on. If the
input frequency is held constant, the VCO frequency changes as a function of
time during the lock-on process, and then remains constant. Therefore, both
frequencies generally vary as a function of time. Hence, it is very convenient
(in 2 mathematical sense) to express both frequencies in terms of a frequency
which is fundamental to the system and which always remains constant. The
natural frequency of the VCO, «_, is just such a frequency. For example, the

input to the loop was written as

V2 E sin [a)ot + 01 ®)] (1)

Suppose the loop input is a sinusoid of constant frequency «; given by

v 2 E sin (mlt + a)

5




We could just as correctly write it as

v 2 E sin [a)ot+(a)1 - wy)t+al )

Which when compared with Eq. (1) gives

01 (t) = (@) —w)t+a

Therefore, there is nothing lost by expressing signals of different frequencies

all in terms of the same frequency, provided the necessary adjustment is made

in the time-varying phase angle.

Continuing the development of the differential equation, the output of the

phase detector is given by

e; () = Ky vV 2 E sin oyt +01(t)] V2 Ccos logt + 05(0)]
(3)

Kg EClsin [Za)Ot +01(0) + 6,(0)] + sin [6,(t) — 6,(}}

The term 2w, in Eq. (3) can be neglected, since neither the low-pass

filter nor the VCO will respond to it, provided o _ is reasonable large.

The output of the filter is then given by

ec(t) = K; F(S) Kg EC sin [6;(t) — 0,(t)] @)

where F(S) represents, in ope-rational notation, the effect of the filter on the

signal sin [0 (1) - 6, ()].




Let
Gl(t) = 62(‘) = 6(t) (5)

where 6(t) is the instantaneous phase difference between the input signal and
the output of the VCO.

Equation (4) then becomes

e (t) = Kp F(S) Kg EC sinf(t)

(6)
The output frequency of the VCO is given by
g + 050) = @+ Kog ec(0) (7
Substituting for e_(t) from Eq. (6) gives
0)©) = K., Kp Kg EC F(S) sinfi(0) (8)
Differentiating Eq. (9) with respect to time gives
6y(©) = 01() = 6(0) )

Substituting in Eq. (7) for 6, () gives

6,(0) - 6®) = K., K; Kg EC F(S)




or
6(t) = 6,(t) - K., K; Kg EC F(S) sinf(c) (10)
Let

K = Ky, KgK; EC

Equation (10) may now be rewritten as

Oy = 6,(c) = KE(S) sinb(t) (1)

Equation (11) is the basic differential governing the behavior of the phase-locked

loop where

b(t)

instantaneous frequency difference between the input to the

loop and the output of the VCO.

[91 (t) instantaneous frequency difference between the input to the

loop and the free-running frequency of the VCO,.

6(t) instantaneous phase difference between the input to the loop

and the output of the VCO.

The terms "instantaneous phase difference' and '"instantaneous frequency

difference' are discussed in Appendix V.




SECTION I

CONSIDERATION OF FIRST-ORDER PHASE-LOCKED LOOP

The simplest type of phase-locked loop is that shown in Fig. 1, except
that the low-pass filter is omitted, a direct connection being made between
the output of the amplifier and the input to the VCO [F(S) = 1] . Although the
low-pass filter is not present in the feed-back loop, it is assumed that the VCO
will not respond to high-frequency components applied to its input (that is, the

term in 2 o, resulting from product detection).

We now consider the case where a sine wave of constant frequency o is

applied to the loop.

For the case discussed above, Eq. (11) takes the particularly simple

form given by

6(t) = Aw ~ K sinb(t) (12)
where

o(t) = instantaneous phase difference between the input to the
loop and the output of the VCO.

o(c) = instantaneous frequency difference between the input
to the loop and the output of the VCO.

Ao = 0] -0, = frequency difference between the input to the loop and
the free-running frequency of the VCO.

K = open-loop gain of the loop.




Equation (12) is a differential equation of first order, so that the phase-
locked loop shown in Fig. 1 (with the low-pass filter omitted) is usually referred
to as a first-order loop. Basically, Eq. (12) states that when a sine wave of
constant frequency is applied to the first-order loop, the sum of the instantaneous
frequency difference, plus K times the sine of the instantaneous phase differ-.

ence, is always constant, that is

é(t) + K sinf(t) = Aw (13)

In general, there will be both a frequency difference and an initial phase
difference between the input to the loop and the free-running frequency of the
VCO. The process of pulling the VCO into frequency alignment with the input
to the loop will, therefore, require finite time. Further on in this report, the
pull-in time is shown to be a function of both the initial frequency detuning

(w; - ®,) and the initial phase angle ;.

A plot of Eq. (12) helps in understanding the physical process by which
the phase-locked loop pulls into frequency alignment with the input; it is shown

plotted in Fig. 4.

The first point to note is that the system represented by Eq. (12) is in

equilibrium when the instantaneous frequency 6(t) is zero.

This occurs when

Aw - K sinf = 0 (14)

or

sinf = —
K

10



4 K+ AW

-(1+8,)

e e e e e

9»-----_.....-_

njA

|
|

-(k-aw) + \/
E

Let
A
sin~! ?w =6,
Then the system defined in Eq. (12) is in equilibrium for values of 6
given by

= am+ (-1)° 00 (15)

11




where n is an integer including zero.

The values of ¢ given by Eq. (15) obviously occur at the intersections

of the curve with the b(t) = 0 axis.

Which of the values of 6 given by Eq. (15) represent positions of stable
equilibrium? For 6 positive the rate of change of 6 with time is positive,
implying that 6 is increasing. On the other hand, 6 negative implies that 6

is decreasing with time.

These two conditions indicate that for any phase position for which the
curve is above the 6 - 0 axis (Fig. 4), 6 moves to the right (6 increasing),
while for phase positions below the § - 0 axis, ¢ moves indicate the direc-
tions in which § moves with time. These conditions indicate that values of 6
in Eq. (15) for which n is even are points of stable equilibrium, while those
for which n is odd are points of unstable equilibrium. Since the curve drawn
in Fig. 4 is periodic, it is sufficient to restrict our attention to any convenient

2z radians.

If the mistuning Ao is increased, the phase trajectory shown in Fig. 4
moves upwards with respect to the # - o0 axis until the two values of ¢ (stable

condition and unstable condition) coincide. For this value of 6, say 6_.,,

ocrit sin — = 7 —sin —_—
K K
or
. =1 A(l) i
sin _— = -
K 2
Aw
-~ _1
K

12




Hence, for the case where the mistuning Aw equals the open-loop gain K, the
system reaches a position of unstable equilibrium where any slight disturbance
of the phase due to noise within the loop may cause the phase to recycle to the

next point of unstable equilibrium.

The above considerations lead to the conclusion that the mistuning
Ao = (w] - ®,) should be less than K rads/sec so that the first-order phase-

locked loop settles down to a steady condition; i.e.,

lAw| = o] = w/| <K radians/sec (16)

For the condition given by Eq. (16), the steady-state phase error 6  is given

by

13




SECTION IV

PULL-IN TIME FOR LOOP

The time required for the loop to pull-in is given by the time required for
the phase difference 6 to traverse the phase trajectory from some initial value
0; to its steady-state value 6,. The time required to reach 6, is always
infinite and independent of 6, , since as ¢ approaches 6 _, 6 changes very

slowly (i.e., 6 approaches zero, see Fig. 4). This point is discussed fully

in Appendix I.

It is more realistic to say that pull-in time is the time required for 6 to
change from some initial value 6; to (6, —¢) or (6,+¢) depending upon 6;
lying to the left or right of 6, (see Fig. 4). Appendix I shows that the pull-in

time T is given by

(7

for —(7r+60)<6i<60—€; and by

€
secf, cos (90+ —2-)

s In (18)

for (00+c)<0i<(7r—60).

14




If the initial value of 6; lies in the interval (6, -¢) < 6; < 6 +¢, the pull-in
time is, of course, zero, since the phase angle ¢; is already within the region

defining the condition of lock-in. Stated formally, T = 0, for (6, -¢) <
01 < (00 + () o

Examination of Egs. (17) and (18) indicates that the pull-in time T is

infinite when

sec, = « or 0 = =z ; this corresponds to the case already
2

discussed, in which the detuning A« is increased until it equals

the open-loop gain K.

K = 0; this is a trivial solution corresponding to the open-loop
gain K = 0.

€
sin 5 0 or ¢ = 0 ; this has also been discussed previously; it

takes infinite time for the loop to pull-in to its steady-state phase

error 6, .
cos 0.+ 0 0.+ 6
n
21 ° 0, or 12 ° 7" ( n 0odd), This occurs when

0, = (mm - 6) and corresponds to the initial phase angle starting
at the points of unstable equilibrium given by Eq. (13) for n odd;

i.e., 0; = (m+0) or 6; = (n-96)).
zero when
0, = 6, - & for Eq. (17)and 6; = (6,+¢ for Eq. (18).

The actual definition of pull-in time is somewhat arbitrary, since it

depends on a satisfactory choice being made for the value of ¢. In

15




this report, the time taken for the loop to pull-in to within 5 degrees
of its steady state value (¢ = 5 degrees) will be called the pull-in

time.

The expressions for the pull-in time T given by Eqs. (17) and (18) are

rather involved; however, they show that T is
inversely proportional to the open-loop gain K. (For the first-order loop
discussed in this report. the noise bandwidth B, is equal to % cps , SO
that the pull-in time is also inversely proportional to the noise bandwidth. )
a nonlinear function of the initial phase angle 6,

a function of the steady-state phase angle 6_, which in turn is a function

o?

of the ratio:

frequency mistuning Aw [ Aw
. = — fe,sinf = —
open-loop gain K

Equations (17) and (18)can be rearranged so that the product T-K is

‘then a function of the steady-state phase angle 6, and the initial phase angle 6;.

Figure 5 shows T:K plotted against the initial phase angle ¢, ,

for 6, = 0, 30 and 60 degrees corresponding to

Aw
= 0,0.5 and 0.866. (19)

Figure 5 also shows that certain characteristics regarding the pull-in

time T now become apparent.

16
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Fig. 5. Plot of Pull-In Time x Open=Loop Gain (T x K) Versus Initial Phase
Angle 6, for 6 = 0°, 30° and 60°
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T starts to increase rapidly for initial phase angles approaching —(= + 6,)
and (7 - 6,) for all three values of 0, The values 6; = —(z + 60) and

6; = (=-6,) are actually asymptotes corresponding to infinite pull-in

time.

The two branches of the curve for 6 = 0 are symmetrical about the
line 6; = 6_ = 0; as the mistuning increases (6, increasing), the two
branches become asymmetrical about the line 6; = 6, . There is also

a general increase in the pull-in time as 6 increases.

18




SECTION V

SUMMARY OF PROBABILITY CONSIDERATIONS ASSOCIATED WITH
PULL-IN TIME T FOR FIRST-ORDER PHASE-LOCKED LOOP

The results obtained in Appendixes I, II, I, and IV regarding the statisti-

cal nature of the pull-in time are discussed in this section.

In Appendix I (Eqs. (46)and (50)) it is shown that the pull-in time T is
given by

20
K € 0.+0. (20)

for —(» + 00) < 01- < (60—6);

and by

(21)

for 0o+c<0i<(n—0°).

19




Let

and

In =I¥E
R €
sin -
2
Equations (20) and (21) become
60 - 6i
sin ) /
X = secf ?B + In ——__6°+6i ‘ (22)
cos
2

for —(m+0,)<6;,<(O,~-¢e;

20




=

and

0. -0

(23)
Oi + 00

cos

i )
s sin
X = sec9o ?Bl+ln -

for (00+()<0i<(ﬂ"9°)0

The probability density for X (derived in Appendix II) is given by

pX) = = (X =0 (24)
w

and by

cos? 6, 1 1
p(X) = . + 3
27 cosh(cosf X—B)-sinf cosh(cosf_X~B—Bl}sing, 25)

X >0

The probability density, as given by Eq. (25), is shown plotted in Fig. 6

Aw
for 6, = 0, 30 and 60 degrees (Y = 0, 0.5 and 0.866) . The value of ¢

was again taken as ¢ = 5 degrees.

21
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5 6 7 8

— XsKT

Fig. 6. Probability Density Function for the Product (T x K)

The mean of X, (X), (Eqgs. (98) and (99), Appendix II) is given by

- 1
X= == sec(‘}0 B(17+2(90-e)+B1 (77—260-f)+

27

. (26)

O+ 2

€
6 —
2
2 f In (cosA)dA — 4 L In (sinA)dA
06

€
2

22




If ¢ is small, the last two terms in Eq. (26) may be ignored and the equation

reduced to

— 1 [
X = — sec0° [B(7 + 200) + Bl (7 - 200)] (27)
7

For ¢ small B=Bl = In (cosoo cot %), so that

_ 2 cosf,
X = sec00 In (28)
€

for ¢ small.
Figure 7 shows how X varies as a function of the steady-state phase
A -
angle 6,, which is related to Aw and TK by = - sin! 6, . X has been
K

plotted against 6  for ¢ = 5 degrees and 0.5 degrees, and indicates how the
mean value of the pull-in time increases as the loop pulls in closer to the

steady-state phase angle.

The cumulative distribution for X is derived in Appendix IV and is

given by

1
cosf_ X —-B cosf X -B
e ° % " —sinf, e Ol + sinf
-1 o
+ tan
cos 00 cos 00

-1 (29)

B |
p(X<Xo) = — Jtan
7

Figure 8 shows the cumulative distribution of X for 6, = 0, 30 and

60 degrees. The value of ¢ is again taken as 5 degrees.
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APPENDIX I

DERIVATION OF THE FORMULA RELATING
PULL-IN TIME T TO THE INITIAL PHASE ANGLE ¢,

The time required for the phase difference in the loop ¢ to traverse
the phase trajectory shown in Fig. 4 between an initial value 6; and a final
value 6; is obtained by integrating Eq. (12) and evaluating for 6; and 6;.

Equation (12) may be rewritten as:

dé :
= K
Aw ‘
— — sind
K
or
de
— = Kdt
a — sinf
where
a = & (30)
K
Integrating Eq. (30) gives
0¢ T

27




or

In = KT (31)

Let

.atan-g - (1 + A)
— In = KT (32)

A 6
a tan E —-(1 -A)
i
Substituting the limits in Eq. (32) gives
O %;
atan — — (1 + A) atan — — (1 + A) (
1 2 2
— ln —In = KT (33)
A Of Oi
atan—z——(l—A) atanz——(l—A)\

Before going further with this equation, consideration should be given to the

range of values of 6; and 6¢ for which evaluation of Eq. (33) is of interest.
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Basically, we require the time taken for 6 to change from an arbitrary

initial value 6; to its final value 6; = sin~la = 6, which is the steady-

(o]
state phase error, as explained previously. Therefore 6; in Eq. (33) is simply

6,, the steady-state phase error.

We now consider the range of initial values of 6; to be used in evaluating

Eq. (33). Figure 4 shows that ()i falls into two convenient ranges. They are
~(@+6,)<06,<0, (34)
and

6,<0;<m-6, (3%)

Returning now to the evaluation of Eq. (33), if the value 6  is substituted
for 6; in the first term of the left-hand side of the equation the denominator

becomes zero and the term itself becomes infinite. This arises because

D>

o 1-A

tan —
2 a

(sin9o = a and cosBo = A)

This is to be expected, since as 6 approaches 6,, 4 tends to zero;
dt

e.g., the phase is changing very slowly, requiring infinite time to reach its
steady-state value of 6 . Therefore, the time required for the phase-locked
loop to pull into its steady-state value becomes infinite, independent of the
initial value of the phase. To avoid this difficulty, the time required for the

phase 6 to pull-in to within ¢ of the steady-state value 6, from an arbitrary

value of 6; is determined (see Fig. 4).
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Equation (33) is evaluated below in two separate sections according to the

two possible ranges of 0; as given previously, i.e.,

—(7 + 90)5 Gi < (6o -€)

(90+e)§9i§(n—60)

PULL-IN TIME FOR (7 +6,) < 6; < 0, - ¢

The first term in Eq. (33) is L where

O
a tan - -(1+A4)
L = In
O
atan — — (1 — A)
where
6f = (90 = ()
Expanding
60 €
Bf (60 _ E) tan — — tan -—
-~ tan — = tan =
2 60 .
l+tan — . tan —
2

30
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Now

% (-4
tan =— =
a
and let
€
tan — = a
2
O 0=  (1-A)-aa o
tan7=tan 5 = T (= Ae (37)
O
Substituting for tan = in Eq. (36) gives, after some simplification,
A
b 2 (A +aa) (38)
a(l - A)

We now consider the second term in Eq. (33), M, where

a tan -2——(1+A)
M= In
n 7 (39)
tan — — (1 = A
aan2 ( )
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When considering the initial values of ¢, 6;, it is convenient to use the point
of unstable equilibrium at - (7 +6)) as a reference point in the same way that

the final values of ¢ were measured with reference to the stable point 6 = 6.

Referring to Fig. 4 and measuring from the point of unstable equilibrium,

it is seen that

Gi = (n+00)+6
= —n7—(0-256)
ei —17-(00—8)
tan — = tan —_
2 2
iy B
(90_5) 1+ tan 7 tan —2-
= Cot ==
2 00 )
tan — -— tan —
-2
. % a-a 5
Recalling that tan - , and letting tan?: B,
a
. 1-A 8
0. + :
B = - : - il A (40)
2 1-A (1-A)-apB
-B
a
%

Substituting in Eq. (39) for tan 5 we obtain, after simplification,

af
M—lng(l—A)(A+a[3)$ (41)
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Using the values obtained for L and M from Eq. (38) and (41) and substituting

in Eq. (33) gives

KT

]

>|

S

-a(A+aa)] [ af ]
Inj——]-1In
a(l—-A) (1-A)(A+af)

| -
R
e

. (A +2a) (A+a/8)] 42)

S M

8
Recalling that a = tan-% and B = tan 7 Eq. (42) becomes

1 € )
KT = — In |{A cot — +a Acot — +a
A 2 2
1 € )
T= — In A cot— +a Acot — +a
KA 2 2

Recalling that A = cos 6, and a = sinf_,, Eq. (43) may be written as

(.-5) ~(-2)
ot LA . (44)

(43)
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Also

0, = -(m+60)+0

for —(m+0))<0,<0 —¢ so that

8 =0;+m+0, (45)

Equation (44) may now be rewritten by substituting the dependent variable ¢,

for & .

Equation (44) now becomes

(46)

PULL-IN TIME FOR (0, + &) < 0; < (v = 0,)

Using the same approach used in evaluating T for the range
—(m+0y) < 0; <(0,-¢), butusingthepoint 6 = (m-6) as a reference

for the initial value of ¢ (see Fig. 4), it can be shown that

1 € o
T = — In [(A cot — — a) (A cot — - aj (47)
KA 2 2
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which reduces to

We can rewrite Eq. (48) with 6, as the dependent variable since

6. = rr-0°—8,

1

for 0,+¢) < 6; < (m-6,), or

Therefore Eq. (48) becomes

K cos 00

5 = (n—6,-0)

€
cos 00+ P

In

. (oi - 00)
sin

3 €
SN —

2
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6, 00)
COS Qe
2

(48)

(49)

(50)




APPENDIX II

PROBABILITY DENSITY FOR THE PULL-IN TIME
FOR A FIRST-ORDER PHASE-LOCKED LOOP

In Appendix I it was shown that the pull-in time for the first-order

phase-locked loop is given by (see Eqs. (43) and (47)).

1 o
KT = — In KA e + a) (A cot — + a)] (51)
A 2 2

for —(m+ 60) < ()i < (60 —€);

and

1 [ € 7]
KT = — In (A cot — — a) (A cot — + a)] (52)
A 2 2

for (60+e)§6i§_(ﬂ—60).

Equations (46) and (50) gave the pull-in time with the initial phase angle
v, as the dependent variable. In this and later calculations on probabilities,
it was found that the mathematics was greatly simplified by using & as the
dependent variable. It is then quite simple to substitute for § in terms of 0,

at the end of the calculations. For convenience we let KT = X in Egs. (51)

and (52), which then become .

; n [ o) et
X — In JJAcot — +a Acot — +a (53)
A 2 2
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and

PJI a7

1 ' .
X .{.\. ln <A cot .~ - a) <A cot - a) (54)

To obtain the probability distribution for X, we assume that all initial

phase angles ¢;, -(m+0) 0, (=-0) are equally probable; that is, the

1
probability distribution for o, is uniform and of value p (0 = 5 (see
T

Fig. 9).

Since the use of » as the dependent variable instead of 6, is simply
a linear shift of the angular coordinate, the probability distribution for 6 itself

1
is uniform and of value p (d) o
s

The probabitity distribution p (%) consists of two parts, one discrete and
the other continuous. The discrete part consists of an impulse at X = 0

2 d

magnitude 57 :T- . This can be seen by considering Fig. 9, which shows

thut initial phase angles ¢, such that o .. o0 e already lie within
the prescribed distance of v and are therciore regarded as synchronous

and requiring zero time to pull-in.

The continuous part of the probability distribution is determined below.
[t is again convenient to break this problem into two sections according to

the two possible ranges ot 0, .

—(7 00) A ()i “ (()0 —-¢)




$ p(B:)

t-—

(- 6y)
Fig. 9. Probability Distribution for Initial Phase Angle 6,

PROBABILITY DISTRIBUTION p(X) FOR.-(r+6_)< 6, < (6, - ¢

Using Eq. (53)

1 € d
X = ) In Acot?+a Acot7+a (55)

or

B 1 5
X ===+ — In{Acot — +a (56)
A A 2

38




where

B = In <Acot-;—+a>

is a constant dependent on the mistuning and ¢, and does not contain the

variable 8.

Since X is a continuous single-valued function of 6, for the range of
values of 0, considered, the probability that the variable X lies between
the values x and x +dx is equal to the probability that the variable 60; lies
between the values ¢ and 0+ d0¢ . This is also equal to the probability that

the variable o lies between the values 0 and 6 +df as previously explained:

p(x<X<x+dx) = p(0<0,<0+dO)

pO<d<O+do

In differential notation

p(X) dX = + p(d) dé

or

1
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Since
€] 6.) '
P = p(0) = o
we require only T in order to evaluate p'(X) using Eq. (57).

Using Eq. (56)

X . ! In {A > )
_.K+I n cot3+a (58)

5 (59)
H

We now require the trigonometric function in Eq. (59) in terms of X .
Using Eq. (58)

o
AX —-B = In <Acot-2—+a>
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or

S
eAX—B = (A cot 7 + a>

(60)
eAX—B — 3 s
—_—_— = cot —
A
Now
5 8
cosec2 — =1+ cot2 -
2 2
(61)
2
cosec = +
2 A
Using Eqgs. (60) and (61) and substituting in Eq. (59)
2
1 <eAX—B = >
dx 1 ' A (62)
e 2

'

X
Substituting in Eq. (57) for = obtained in Eq. (62) and recalling

1

g

1
p(X) = —
w

<eAX—B B a>2 (63)
1| —
A




PROBABILITY DISTRIBUTION p (X) FOR (6 +¢ < 0, < (m~6,)

Using Eq. (54)

* X = -1— In [(A cot -€- - a> (A cot -i - a)] (64)
A 2 2

or

1
B 1 )
X = — + — In <A cot——a) (65)
A 2

where

and is a constant dependent on the mistuning and ¢, and does not contain the
variable 8. The similarity between Egs. (65) and (66) is apparent, so to obtain
pX) for 6 +e<6;<(m-6, we justchange B to Bl and -a to +a in

Eq. (63) and we have the probability distribution

1
<AX-B

2
1
(eAx-B +a> (66)
14| ——— =2
A
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FINAL EXPRESSION FOR THE PROBABILITY DISTRIBUTION

Using the results obtained from Eqs. (63) and (66) and recalling that

R €
pX = 0) = —
T

p (%) & farX £ 0 (67)
w

and

1
1 AX-B AX-B

p(X) = — +

2 2
" eAX_B —a AX-B1
I D e +a
A 1+
A 4

for X> 0 where

B = In écot% +a> (69)

and

1 €
Bl = In Acot?—a (70)
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The expression for the probability density function given by Eq. (68)

may now be rewritten with 6, as the dependent variable by recalling that

a = sin@o and A = c056o
Equation (68) reduces to
( ) CoS2 90 1
X ==
3 27 cosh (AX-B) - sin9o
(71)
1
+
cosh (AX—Bl) + sin 60
where
€
Cos o - —2
sin i
2
and
(-3)
Cos o
° 2
Bl = o\ “/ (73)
sin i
2
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Since later appendixes are concerned with the mean and the accumulative
distribution, it is necessary to verify that the integral of the probability density

does in fact equal unity, that is

00

f pX)dX = 1
o]

o0

Using Egs. (67) and (68), if f p(X) = 1, it is required to show that
(o]

o0
cAX-B eAX—B
+ dX = n—¢
o

(eAX—B B a>2 ( ! >2 (74)
1+ R [ + a
oy SR
A A

To evaluate the first term in Eq. (74); i.e.,

we use the substitution




Then

eAX-B gx - du

(75)

it
-
»
=}
t

00 1 1
eAX_B dx 7 —1 (e_B + a)
= -— =—tan -
2 A (76)
o
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o0

To show that f p(X) = 1, it remains to prove that
(o]

. .
-B _ -B
tan_l (e a) + tan—1 <C—+i> = ¢ (77
A A

Recalling that
-1
-B € ‘

e = <A cotk i a> (from Eq. (56))
and

-1
-B €
e = (A cot e a) (from Eq. (65))

Equation (77) becomes

€ €
A - acot — A + a cot —
-1 2 =il 2
tan —_—J+tan —_—]= (78)
€ €
Acot— +a Acot— —a
2 2
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For convenience let

cot —
A - as
tan_1
As +a
_1 (A +as
v = tan
As - a

Taking the tangent of each side of Eq. (78) we get

]
]

<
It

tan(u + v) = tane

Now

tan u + tan v
tanu4+Vv) = ———
l —tanutan v

Using Egs. (80) and (81)

A - as A + as

As +a N As —a
A —as\ /A +as
1_<As+a>(As—a)
(A —as)(As —a)+ (A + as) (As + a)
(As +a) (As ~a)— (A — as) (A + as)

tan (u + v) =

2s (A2 + a?)

(s2 = 1) (A 4 2?)

2s

I = =

-1
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(80)

(81)

(82)

(83)

(84)




€
Since s = cot X (from Egq. (79), we have

which completes the proof required by Eq. (82).
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€

2 cot — 2 tan —

2

tan (u + v) = -
€ €
cot2_ -1 1—tan2 -
2 2
tan (u+ v) = tane




APPENDIX III

DETERMINATION OF MEAN FOR PULL-IN
TIME T OF A FIRST-ORDER PHASE-LOCKED LOOP

Appendix II shows that the probability distribution for X is given by

p(X) = = forX = 0 (85)
w
and
1 <AX-B Ax-B!
pX) = — T >
- (ch_B B a) ( red ) (86) .
1+l e + a
A I\ ————
A
for x>0,
where
X = KT
K = open-loop gain of the loop (a constant)
T = pull-in time of the loop

The impulse at X = 0 does not contribute in any way to the mean; hence

it can be ignored. The mean of X is therefore given by

)_<=J X p (X) dX (87)
(o}
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Using Eq. (86) gives

L 4
00 1
B ] < eAX-B x eAX-B
X = — 5 + 5 dX 38
< AX-B _ AX-B! (88)
1 | (e 1 [ + a
A Ul =y
It is not obvious from Eq. (88) which of the many possible substitutions
will give a convenient solution. The trick in obtaining the solution to Eq. (88)
is to recall how the expression for p (X) was derived in the first place.
Equations (55) and (64) were used, originally, to determine p (X); i.e.,
" X = 5 1o |(acot £ Tl
SR Cot3+a Cot-2-+a (89)
and
X = & 1o (A co g
- n cot 5_3 cot;—a (90)
If we substitute X, as given in Eq. (89), in the first term of Eq. (88),
and X, as given in Eq. (90), for the second term in Eq. (88), then Eq. (88)
- reduces to
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= 1 € )
X = In fAcot — —a) [Acot —+a]|dé
27 A 2 2
§=0
7r+20°-e

)
+ In [(A cot % +a> <A cot oy +a>:I dé

(o]
(=]

where

. _1
6, = sin (a)

Consider the first integral in Eq. (91); i.e.,

7r—20°—e

€ )
In |{A cot — —a Acot — —a dé
2 22
8=0
€ S
In {Acot — —a}+In{Acot — —a }|dd
2 2

7r—20°—e

I
0;\,
I
o
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(91)

(92)

: 8
In <Acot-%—a> (77—20°—c)+f ln<Acot?—a> dd
5§=0




Consider the second integral in Eq. (91)

n+290—c
€ )

In [{A cot — +a) {Acot — +a ]{dd
2 2

7+20_ —¢

o
8
|En <A cot i2 + a) +In <Acot o + a>:' dé (93)

7r+29°—c

J In (A cot %+a> dé
=0

Using Egs. (92) and (93) and substituting in Eq. (91)

6§=0

In <Acot—€— +a> (m+20_—¢)+
2 [o]

- 1
X = ’—ln Acoti—a (n—260—c)+ln Acoti+a (n+260—c)
27 A 2 2

(94)
T+ 290 — ¢

7—=20_—¢
1 " ? 5 &
+ In Acot;—a dé + In Acot5+a dé

27 A
&=0 §=0

Since A = cos 00, and a = sin 60




and

(3-)
_\2_°/ (96)

)

sin —

Acot — +a =
2

Using these results gives for the second part of Eq. (94)

T om+20 —~«¢
o
1 o &
Incos{— +68_] ~Insin — |db
27 A 2 0 2
6=0
77+29°—c
) o
+ Incos{— -6_)-=1Insin — |dd
2 ° 2
6=0

which, after considerable rearrangement of limits, reduces to

€ £
1 90+ 5 D)
2 f In cos (A)dA — 4 I In sin A dA 97)
27 A ;
h _E 0
° 2
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Equation (94) now becomes

_ 1 ‘ !
X = In {Acot — —a) (m—-20_~¢)
27 A ( 2 )( 2

€
+ In <Acot;+a> (77+26o—c)

(98)

€

€ [

_2' 2

Incos AdA - 4 J In sin A dA
0

60+
+2J
60—

If ¢ is small, the last two terms in Eq. (98) may be neglected and the

N~

expression for X reduces to

€ €
cos 00+—2- cos 0o~ 3
sec0o In | — = (n—200—c)+ln —_—

L€ . €
sin — sin —
2

>
'0—‘

(m+ 260 -€)

N
3

(99)
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APPENDIX IV

CUMULATIVE DISTRIBUTION FOR THE PULL-IN TIME T

The probability density for the pull-in time T is given by Egs. (67) and
(68); i.e.,

p(X) = — for X = 0 (100)
w
and
) AX-B Ax-Bl
P (X) = 7 > + >
(AX-B _ e (101)
14 | — | D
A A
for X > 0,
where
X = KT

and

K = open-loop gain of the loop.
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The cumulative distribution for X is given by the probability that X is

less than some specified value, say Xo; i.e.,

XO
pX<X) f p (X)dX
J

Using Eqs. (100) and (101)

1
eAX-B

dX

1
P(X<Xo) — ';r-

A

Xo AX-B
2
A AX-B _,
14—

Let

2 du
Il:f
2
l+u
Y1

57

o eAX—B
€+ f > +
b AX-B _ Ax-Bl |
1+ f————— 14 o T

>2 (102)




where

and

AX -B
u2 e ° -—a e B _a
Il = Itan_l u I = tan_1 I - tan_l —_— (103)
ul A A

Using a similar substitution the second integral in Eq. (102) reduces to

1le +a 1le +a (104)

1
- AX —
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